Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A simulation study of the effect of the diverse valence-band offset and the electronic activity at the grain boundaries on the performance of polycrystalline Cu(In,Ga)Se2 solar cells

Identifieur interne : 003483 ( Main/Repository ); précédent : 003482; suivant : 003484

A simulation study of the effect of the diverse valence-band offset and the electronic activity at the grain boundaries on the performance of polycrystalline Cu(In,Ga)Se2 solar cells

Auteurs : RBID : Pascal:11-0433369

Descripteurs français

English descriptors

Abstract

The paper presents a two-dimensional simulation study of a polycrystalline Cu(In,Ga)Se2 (CIGS) solar cell with various shapes of grains inside the CIGS absorber layer. The grain boundaries (GBs) with a diverse valence-band offset (VBO) and the density of defect states (NtA) are considered so as to evaluate their effects on the performance of the CIGS cell. The numerical simulations show that a CIGS cell with column-like grains can achieve a high conversion efficiency (η), while the η of a CIGS cell with diamond-like grains is low if the VBO at the GBs exceeds 0.4 eV. The VBO at which the η of the CIGS cell with diamond-like grains peaks is found at 0.20-0.27 eV. A favorable VBO mainly depends on the shape of the grains, but it also depends on the NtA. The simulations of the CIGS cells in the substrate and superstrate configurations showed that their performances change if the VBO is varied. This result also implies that the configuration of the CIGS cell is important and the substrate configuration with larger grains in the space-charge region has a considerable advantage if the VBO ranges from 0 eV to 0.2 eV.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0433369

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A simulation study of the effect of the diverse valence-band offset and the electronic activity at the grain boundaries on the performance of polycrystalline Cu(In,Ga)Se
<sub>2</sub>
solar cells</title>
<author>
<name sortKey="Nerat, Marko" uniqKey="Nerat M">Marko Nerat</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Cjubljana, Faculty of Electrical Engineering, Tržaška 25</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Slovénie</country>
<wicri:noRegion>1000 Ljubljana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smole, Franc" uniqKey="Smole F">Franc Smole</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Cjubljana, Faculty of Electrical Engineering, Tržaška 25</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Slovénie</country>
<wicri:noRegion>1000 Ljubljana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Topic, Marko" uniqKey="Topic M">Marko Topic</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Cjubljana, Faculty of Electrical Engineering, Tržaška 25</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Slovénie</country>
<wicri:noRegion>1000 Ljubljana</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0433369</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0433369 INIST</idno>
<idno type="RBID">Pascal:11-0433369</idno>
<idno type="wicri:Area/Main/Corpus">002805</idno>
<idno type="wicri:Area/Main/Repository">003483</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Band offset</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Crystal defects</term>
<term>Defect density</term>
<term>Density of states</term>
<term>Diamond-like carbon</term>
<term>Digital simulation</term>
<term>Electronic structure</term>
<term>Gallium</term>
<term>Gallium selenides</term>
<term>Grain boundaries</term>
<term>Indium selenides</term>
<term>Polycrystals</term>
<term>Solar cells</term>
<term>Space charge</term>
<term>Valence bands</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Simulation numérique</term>
<term>Bande valence</term>
<term>Structure électronique</term>
<term>Discontinuité bande</term>
<term>Joint grain</term>
<term>Défaut cristallin</term>
<term>Cellule solaire</term>
<term>Séléniure d'indium</term>
<term>Densité défaut</term>
<term>Densité état</term>
<term>Carbone adamantin</term>
<term>Charge espace</term>
<term>Polycristal</term>
<term>Cuivre</term>
<term>Gallium</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>7320A</term>
<term>7320</term>
<term>6855J</term>
<term>8460J</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The paper presents a two-dimensional simulation study of a polycrystalline Cu(In,Ga)Se
<sub>2</sub>
(CIGS) solar cell with various shapes of grains inside the CIGS absorber layer. The grain boundaries (GBs) with a diverse valence-band offset (VBO) and the density of defect states (N
<sub>tA</sub>
) are considered so as to evaluate their effects on the performance of the CIGS cell. The numerical simulations show that a CIGS cell with column-like grains can achieve a high conversion efficiency (η), while the η of a CIGS cell with diamond-like grains is low if the VBO at the GBs exceeds 0.4 eV. The VBO at which the η of the CIGS cell with diamond-like grains peaks is found at 0.20-0.27 eV. A favorable VBO mainly depends on the shape of the grains, but it also depends on the N
<sub>tA</sub>
. The simulations of the CIGS cells in the substrate and superstrate configurations showed that their performances change if the VBO is varied. This result also implies that the configuration of the CIGS cell is important and the substrate configuration with larger grains in the space-charge region has a considerable advantage if the VBO ranges from 0 eV to 0.2 eV.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>519</s2>
</fA05>
<fA06>
<s2>21</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A simulation study of the effect of the diverse valence-band offset and the electronic activity at the grain boundaries on the performance of polycrystalline Cu(In,Ga)Se
<sub>2</sub>
solar cells</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the EMRS 2010 Spring Meeting Symposium M: Thin Film Chalcogenide Photovoltaic Materials Strasbourg, France</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>NERAT (Marko)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SMOLE (Franc)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TOPIC (Marko)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ROMEO (Alessandro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SCHEER (Roland)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>GUILLEMOLES (Jean François)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>YAMADA (Akira)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>ABOU-RAS (Daniel)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>University of Cjubljana, Faculty of Electrical Engineering, Tržaška 25</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>the European Materials Research Society (E-MRS</s1>
<s3>EUR</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>7497-7502</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000509101330860</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0433369</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The paper presents a two-dimensional simulation study of a polycrystalline Cu(In,Ga)Se
<sub>2</sub>
(CIGS) solar cell with various shapes of grains inside the CIGS absorber layer. The grain boundaries (GBs) with a diverse valence-band offset (VBO) and the density of defect states (N
<sub>tA</sub>
) are considered so as to evaluate their effects on the performance of the CIGS cell. The numerical simulations show that a CIGS cell with column-like grains can achieve a high conversion efficiency (η), while the η of a CIGS cell with diamond-like grains is low if the VBO at the GBs exceeds 0.4 eV. The VBO at which the η of the CIGS cell with diamond-like grains peaks is found at 0.20-0.27 eV. A favorable VBO mainly depends on the shape of the grains, but it also depends on the N
<sub>tA</sub>
. The simulations of the CIGS cells in the substrate and superstrate configurations showed that their performances change if the VBO is varied. This result also implies that the configuration of the CIGS cell is important and the substrate configuration with larger grains in the space-charge region has a considerable advantage if the VBO ranges from 0 eV to 0.2 eV.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C20A</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H55L</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Bande valence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Valence bands</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Discontinuité bande</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Band offset</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Discontinuidad banda</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Joint grain</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Grain boundaries</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Défaut cristallin</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Crystal defects</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Densité défaut</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Defect density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Densidad defecto</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Densité état</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Density of states</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Densidad estado</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Carbone adamantin</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Diamond-like carbon</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Charge espace</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Space charge</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Polycristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Polycrystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>7320A</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>7320</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>297</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>EMRS Spring Meeting Symposium M: Thin Film Chalcogenide Photovoltaic Materials</s1>
<s2>10</s2>
<s3>Strasbourg FRA</s3>
<s4>2010-06-07</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003483 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003483 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0433369
   |texte=   A simulation study of the effect of the diverse valence-band offset and the electronic activity at the grain boundaries on the performance of polycrystalline Cu(In,Ga)Se2 solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024